Algorithms for Nonlinear Piecewise Polynomial Approximation: Theoretical Aspects
نویسندگان
چکیده
In this article algorithms are developed for nonlinear n-term Courant element approximation of functions in Lp (0 < p ≤ ∞) on bounded polygonal domains in R2. Redundant collections of Courant elements, which are generated by multilevel nested triangulations allowing arbitrarily sharp angles, are investigated. Scalable algorithms are derived for nonlinear approximation which both capture the rate of the best approximation and provide the basis for numerical implementation. Simple thresholding criteria enable approximation of a target function f to optimally high asymptotic rates which are determined and automatically achieved by the inherent smoothness of f . The algorithms provide direct approximation estimates and permit utilization of the general Jackson-Bernstein machinery to characterize n-term Courant element approximation in terms of a scale of smoothness spaces (B-spaces) which govern the approximation rates.
منابع مشابه
Nonlinear piecewise polynomial approximation: Theory and Algorithms
Nonlinear piecewise polynomial approximation: Theory and Algorithms Borislav Karaivanov We study nonlinear n-term approximation in Lp(R) (0 < p < ∞) from Courant elements or (discontinuous) piecewise polynomials generated by multilevel nested triangulations of R which allow arbitrarily sharp angles. To characterize the rate of approximation we introduce and develop three families of smoothness ...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کاملNonlinear piecewise polynomial approximation beyond Besov spaces
We study nonlinear n-term approximation in Lp(R) (0 < p <∞) from Courant elements or (discontinuous) piecewise polynomials generated by multilevel nested triangulations of R2 which allow arbitrarily sharp angles. To characterize the rate of approximation we introduce and develop three families of smoothness spaces generated by multilevel nested triangulations. We call them B-spaces because they...
متن کاملClose interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کامل